
Taking Computer Virus Detection to a New Level

Kurt Bagby
Department of Computer Science, Faculty of Science, University of Auckland

Princes Street, Auckland, New Zealand

Abstract

The battle between computer virus writers and antivirus software writers has been going
on ever since the first antivirus program was written. Now, more than ever, it seems that
this battle may be coming to a head. With the advent of much more complex viruses,
antivirus software and human computer antivirus specialists will have to come up with a
new way to deal with the ever continuing problem of viruses. Current antivirus detection
techniques such as the classic signature based virus detector employed by Norton
AntiVirus are essentially doomed. It seems, however, that Mother Nature herself has
provided the very solution that the computer industry needs to win this war. That tool is
known as an immune system.

1. Introduction

 The first known computer virus arrived sometime during the 1980’s. Since they

have arrived on the scene, computer viruses have exploded both in number and in their

complexity. Overall, they have become a nuisance to both the home user and large

corporate businesses. Just like viruses in nature, the amount of damage a computer virus

can cause can be next to nothing or somewhat colossal. Likewise, the intent behind virus

creation can range from a simple prank to being a carefully devised plan tailor-made for

destruction.

 The ability of viruses has come a long way. The first kind of “real” viruses were

known as stealth viruses. This meant that the viruses tried to hide themselves from being

detected. As viruses became more complex their characteristics changed as well. They

became polymorphic (to do with encrypted viruses where the decryption method is

variable), they used armouring (an attempt to prevent anti-virus researchers from

disassembling them), and became multipartite (the ability to infect both normal programs

and boot sectors). As time got on even further, combinations of these were all

incorporated into one virus.

In the present, viruses have become multi-platform and most recently,

metamorphic (“there is no way to decrypt the code of the virus to a constant form”

[Schreiner2002]). With these recent advances in the world of virus writing, traditional

virus detection methods will not work anymore. Therefore the need for a new way to

detect computer viruses is essential in today’s world.

But the increasing complexity of viruses is not the only reason a new virus

detection scheme should be sought. Two more reasons for a new detection scheme are:

1. The rate at which viruses are written is quite high. It is hard for the anti-

virus world to keep up with and keep track of all the new viruses that

are emerging today; and

2. The increase in the world’s interconnectivity via the internet and

emailing systems and the increase in the world’s interoperability are

making it considerably easier for viruses to spread. Updates in current

anti-virus protection systems will not be able to propagate as fast as the

spread of new viruses. [Kephart1994]

 Thus the need for a more complex computer virus detection scheme is multi-

dimensional as well. Rather than depending on the knowledge of already known viruses,

computers will have to start defending themselves much like a human immune system

defends itself against new viruses. Given this analogy, this paper aims to introduce the

concept of a computer immune system and how it is more applicable in today’s world.

2. Current anti-virus techniques

 Probably the most widely acknowledged virus detection and prevention system of

today is the program known as “Norton AntiVirus”. Norton AntiVirus is a signature

based virus detector. The idea behind signature based virus detection techniques is quite

simple. Basically, a list of known virus signatures is stored in a file. Signatures are just a

small sequence (normally 16 – 32 bytes long) of instructions that represent a virus and

are guaranteed to be found in each occurrence and derivation of that virus [Kephart1994].

The signature that the virus is based on is supposedly (sometimes bad signatures have

been selected) not expected to be contained in any normal file within a computer system.

When Norton AntiVirus is run, it compares programs within a computer to the list of

known signatures. If there is a comparison, then the corresponding program is denoted as

being of viral nature and the corresponding actions are taken to undo the virus’ damage

and ultimately, delete the virus.

 With the recent advent of metamorphic viruses, a detection technique such as this

will not work anymore. This is because metamorphic viruses are never in a constant state

and thus signatures cannot be determined for them. Another reason that this technique

will fall by the wayside is that the amount of viruses being created each year may be too

much for virus researchers to keep up with (in 1994, two or three viruses were being

created each day [Kephart1994]). This is also a result of the complexity of viruses. The

more complex a virus is, the longer it takes for the virus to be analysed and a signature to

be determined. So the combination of increasing numbers of viruses and an increasing

complexity in viruses is a losing battle for the anti-virus researchers. Furthermore, with

the internet becoming more and more widespread, viruses can travel much quicker

around the world and can cause considerable damage very quickly if the intent is there.

Therefore we need to find a method which is fast, accurate and has the ability to “spread

the news”, to combat computers against viruses. This is where Mother Nature herself has

provided the solution.

3. An immune system for computers

 Based on the immune system for humans and other vertebrates, one of the latest

ideas in protecting computers against viruses is to arm them with an immune system of

their own. In an extremely simplified version of nature’s immune system, what happens

is that entities known as T cells recognize particular antigens (unwanted foreign particles

or viruses) and have them killed. The idea behind the T cells recognizing antigens is that

they recognize anything that isn’t part of their host, i.e. they have learnt not to recognize

their host.

 For the same idea to be used in computers, the computer too has to learn how to

recognize what does belong to itself from what doesn’t belong to itself. A couple such

dynamic anomaly detectors exist, namely activity monitors and integrity management

systems, which try to determine self from non-self. Activity monitors alert users when

something that is rarely associated with normal occurs and integrity management systems

warn users when something suspicious has happened to their files [Kephart1994]. The

problem is that these detectors have a more than acceptable rate of mistaking what is

denoted as normal behaviour with non-normal behaviour. Because of this, users then tend

to ignore their warnings (kind of like the story about the boy who cried, “Wolf”).

 The problem with the two aforementioned methods is that they have a problem

when determining self from non-self. By supplying computers with their own immune

system, they can perform their own training specific to themselves and thus the problem

of determining self from non-self will be assuaged. In addition, the need for signature

based detection programs for the detection of viruses will not be needed in the fact that

users will not have to constantly update the anti-virus program. The program will update

itself when the time is appropriate, i.e. when a virus strikes. This doesn’t mean, however,

that anti-virus, signature based programs will completely disappear, nor will the need for

human interaction completely diminish. There will always be extremely exceptional

viruses that will need human interaction to solve them, much like when a human becomes

extremely sick they normally proceed to see a doctor. Also, the signature based virus

programs will still be distributed, just not as often. They will act like vaccines when the

treatment of more complex viruses is found.

 The question for the moment then is how can an acceptable level of the

recognition for self and non-self be determined, and if it can, how will a computer

diagnose itself like a biological immune system?

3.1. Determining self from non-self

 In [Forrest1994], a method for determining between self and non-self is described

which functions in a very similar way to the production of T cells in the human immune

system. They form a base testing environment with strings. Firstly, they define a set of

strings all of equal length which are denoted as self. Next, they randomly generate strings

of the same length and test them against the strings that represent self. If they match a self

string then they are discarded otherwise they are stored as detectors (non-self strings). A

match is defined as one string being the same as another in r-consecutive positions within

the string. Here r is an integer. For example, consider the two strings AHGTKJFS and

KFFTKJHJ. Within each of the strings there is a match of TKJ in the fourth to sixth

position:

self string A H G T K J F S

random string K F F T K J H J
position 1 2 3 4 5 6 7 8

 If r is set to 1, 2 or 3 then this would be considered a match and the random string

would be discarded as it matches self. If there wasn’t a match, the string would be added

to the list of detectors.

 When the required amount of detectors is achieved, the algorithm stops and the

list of strings which define non-self have been created. The amount of characters in the

alphabet, the length of the string, the size of r and the amount of strings which denote

non-self all contribute towards the probability of an anomaly being detected.

 This idea is then extended to executable code with characters of a string being

defined as instructions or op-codes. Once training has been completed, the program can

be checked against the detectors at a later date. If any matches are made then the program

is known to have been tampered with. This technique also has the advantage that if

someone tries to change the detectors, the same result will occur because the changed

detectors will end up matching the self strings. Thus we still know that a modification has

been made.

3.2. Diagnosing

 In [Kephart1995] an example of how to analyse and diagnose a virus is given.

Firstly, if a virus has been detected, the logical step is to search the list of known

signatures for a match with the current virus. If there is a match then the appropriate

action can be taken otherwise a different strategy needs to be employed. Decoy programs

are released which attract the virus to infect it. Several of these need to be released so that

the program has several samples of the virus to work with. Several samples of the virus

are needed because the algorithm does not have such a detailed understanding of machine

code as does a human expert. By comparing the infected samples of the decoy programs

with legitimate ones, the algorithm can work out how the virus has attached itself to the

host. From here it can formulate the repair language for the currently infected program.

When the repair language has been formulated, a signature for the virus needs to

be created so that if the same virus is encountered at a later date, it can be dealt with more

efficiently. This task is a non trivial task as signatures need to be selected such that they

are common to all instances of the virus but at the same time do not appear in legitimate

programs. As a rule of thumb, data is not used to create signatures. Rather executable

code is used as this is the least likely to change, although with the recent advent of

morphological viruses this provides yet another problem. Once a set of common

signatures have been found, the signatures are compared against a substantial number of

legitimate programs. The signature with the smallest probability of being amongst the

legitimate programs is selected as being the most appropriate signature for the virus and

is added to the database of known viruses.

3.3. Spreading the word

 As a final solution to the problem of deleting a new virus, other computers need to

know how to get rid of the virus if it should happen to attack them as well. In

[Kephart1994] a method is proposed whereby if a computer finds way to diagnose a

particular virus, as a final step it sends a message containing the signature and repair

method for the virus to its immediate neighbours in the network. If one of the neighbours

has the virus, it uses the repair program to fix the problem and then sends the same

message to all of its neighbours. If a neighbour doesn’t have the virus, it just stores the

signature and repair program in its database in case the virus should come its way. An

uninfected computer does not propagate the message further. This concept is shown in

figure 1.

Figure 1. (taken from [Kephart1994])

4. Discussion

There are several problems with the above techniques in determining self from

non-self and diagnosing viruses. One event that could occur is that a virus could be

written using the commands that make up self. Although this would prove to be very

difficult, it is a possibility and shouldn’t be discarded. This problem was addressed in

[Forrest1994]. They say that if they were to incorporate variable length self strings, the

amount of common substrings available for the production of a virus diminishes quickly.

A point that wasn’t addressed in [Forrest1994] was if it was possible to find commands

that are not contained in the self set, and are undetectable by the detector set. If this is a

possibility then the list of commands to use in order to create a new virus would increase.

The task of determining which commands are unable to be detected by the detector set

would prove to be a very difficult task as well. This applies to both of the

abovementioned attacks as determining what the commands are for self would take a

similar approach.

 Another problem which affects this entire system is that when an anomaly is

detected, how do we know if it is a virus or not? The anomaly that has been detected

could result from the fact that someone has modified a program. If this can occur then

another interesting problem arises. How often do we need to train a program to know the

difference between self and non-self? If we wanted the detector set to be a current set all

the time, then, for executable code, we would have to retrain the system every time we

recompiled any code. This would definitely prove to be time consuming, especially since

the detector set is formed by the generation of random strings. [Forrest1994] suggests that

the process could be sped up by taking away the random selection of non-self strings and

employing some other algorithm. They also mention that by using such an algorithm,

some regularities could be noticed and thus exploited.

 So if we didn’t generate a detector set after every time we compiled, how often

would we generate a detector set? We could generate the detector set after each session

we have with the computer but this could result in a new virus being added to the detector

set. This would happen if a virus entered the computer during your session thus creating

yet a third problem. Whenever we want to generate a new detector set for a modified

program, how can we test whether this new program has a virus or not? Maybe the

generation of global detection set could be created for this particular program. By doing

this though, we would have to know what types of instructions are going to be in future

modifications of the program as well. This would restrict a programmer’s ability to create

programs freely and would also raise the chances of a virus writer determining what is in

the detector set for a specific program. So the trade-off between usability and security

arises.

 People can argue that a detector set wouldn’t have to be created every time a

program is recompiled and that a generic detector set would probably suffice. We must

remember that viruses aren’t going to be sitting around on the phone line waiting for you

to change you program so that they can infect your computer, although this is definitely a

possibility. If such a virus was written, would it always be waiting there? Such a virus

could be there at one point in time, but every time a person logged on to a computer for

the rest of that computer’s life time? The possibility of this is very slim.

 This brings us back to the generic detector set, just how generic should this

detector set be and, would one have to be created for every single program within the

computer? This brings on the task of determining which programs would belong to one

set of programs and which would belong to another. The question of whether a program

belongs to more than one set would also crop up and the corresponding program would

end up being tested twice for viruses. Is double checking in such a case a good thing or

just an efficiency deficiency? Given this, could we then create a detector set that

encompasses the whole computer? Although this would be the ideal situation, it would

probably be the ideal situation for virus writers as well because the instruction set they

would have to create a new virus would be much greater.

This still doesn’t completely solve the problem of being able to write programs

freely for a programmer though. And the installation of new software for a normal user

would still pose a problem. With such a generic set, each time new software is installed,

the detector set would have to be recreated. Creating a detector set for the whole

computer would definitely be a very time consuming task. Such a task would probably

have to take place each time a programmer creates a program as well.

From all of this, we are brought back to the question of how to determine whether

a detected anomaly is a virus or not. [Kephart1994] actually uses a combination of

activity monitors and integrity management systems to determine whether the anomaly is

a virus or not. As mentioned earlier though, such systems have generated a more than

acceptable false alarm rate. The exact details of how they used them were not presented

though they did say that if the behaviour resulting from such an anomaly was related to

other virus behaviour it was very probable that the anomaly was viral. A careful use of

the two techniques may provide a more robust detection system.

 If we were to imagine that the problem of determining whether a virus is present

or not were solved, we can bring about the next argument which involves diagnosing the

virus. In the procedure presented in this paper, it is said that several infected decoy

programs are needed to determine how to diagnose an infected file. Nothing is mentioned

about how computationally expensive this process may be. When the computer decides to

fix itself, is the computer supposed to devote itself completely to fixing itself or is the

computer expected to carry on working whilst the fixing process continues in the

background? This is much like whether a person should stay home or go to work when

they are sick. How long is a computer expected to take to fix itself? Ideally, we would

want the computer to still be usable when it is “sick” but then there would be

performance issues and the problem of determining which processes are allowed to run

would also have to be defined as well. This would have to happen because if some

processes are allowed to run, they too may become infected. And what happens if the

computer cannot find a solution? More the likely, the logical thing that would happen

would be similar to what is happening right now when new viruses are detected. But the

idea behind the immune system is that such a case should not happen. If it can happen, it

should be a very small possibility.

 Another problem is signature selection. It has been known that even human

computer virus experts have selected bad signatures for viruses before [Kephart1994].

When such an incident occurs users have been known to delete perfectly legitimate files

because they were scared of what would happen if they left what they though was a virus

alone. And the problem with metamorphic viruses still hasn’t been solved. Signatures for

such viruses cannot be obtained. When such a virus strikes do we have to diagnose the

problem the long way every time, i.e. using the immune system? Such an event also

should rarely occur.

 Problems to do with the distribution of the solution for any given virus among a

network also surface. As mentioned in section 3.3, the virus solution stops propagating

once it reaches uninfected computers. Is this solution feasible? The virus could appear in

some totally unrelated part of the network which hasn’t received a solution yet. Why

should the whole process of creating a solution run through again? A solution to this

could be that computers ask the entire network to check whether they have a solution for

the virus. But this too is very time consuming. The question then is do we set a certain

time value for a diagnosis to travel around a network. If so, how do we know exactly how

long this time value is? The diagnosis for the virus should reach every computer and

people are adding and removing themselves from networks all the time. And then we

have the problem of when a new machine arrives on the network. Such a machine doesn’t

have all the new virus information that hasn’t yet been incorporated with the latest anti-

virus program. Software would have to be included into computers that can ask a network

for all such information the first time they are connected to a network, or computers that

are already part of a network could check whether new computers have such information,

or both. This is all added complexity and also would provide a nice loophole for virus

writers and other types of intruders to exploit. Within networks, it seems that we aren’t

just creating a computer immune system, but actually a computer network immune

system.

5. Conclusion

 Viruses are becoming more and more complex every day. Likewise, proposed

solutions to diagnosing computer viruses are also becoming more and more complex. In

this paper an idea inspired by the human immune system to create an immune system for

computers has been explained and various problems associated with its implementation

have been discussed.

 Creating such a system is indeed a huge step in protecting computers against

viruses. It seems that the techniques used to create such a system are still very much in

their infancy and much research still needs to be carried out especially with regards to

determining self from non-self and whether such an anomaly is viral or not. It seems that

there is a definite tradeoff between several items within the immune system’s creation.

Whether each individual program should know itself, the whole computer should know

itself, or if this is user dependant still needs to be determined. The size of the detector set

and the memory requirements for detector sets still need to be evaluated. As in any

program, there is always the tradeoff between time and how well the program works.

This particularly applies to where the computer diagnoses itself. Distributing a diagnosis

for a virus is seen as a completely new problem altogether.

 Overall, an immune system for computers would be a very sought after

commodity. Many questions still remain open and much research still needs to be carried

out but from the information presented in this paper, it is clear that the computer immune

system is well under way.

6. References

[Deeb2002] Deeb K, Lewis S., “A biological approach to the development of

computer autoimmune systems”, [Conference Paper] Foundations
of Intelligent Systems. 13th International Symposium, ISMIS
2002. Proceedings (Lecture Notes in Computer Science Vol.2366),
Springer-Verlag. Berlin, Germany, 2002, pp.514-25.

[Forrest1994] Forrest S, Perelson AS, Allen L, Cherukuri R., “Self-nonself

discrimination in a computer”, [Conference Paper] Proceedings of
1994 IEEE Computer Society Symposium on Research in Security
and Privacy (Cat. No.94CH3444-7). IEEE Comput. Soc. Press, Los
Almitos, CA, USA.1994, pp.202-12.

[Kephart1994] Kephart, J. O., “A biologically inspired immune system for

computers”, [Conference Paper] Artificial Life IV. Proceedings of
the Fourth International Workshop on the Synthesis and
Simulation of Living Systems. MIT Press. Cambridge, MA, USA,
1994, pp.130-9.

[Kephart1995] Kephart J. O, Sorkin G.B, Arnold W.C, Chess D.M, Tesauro G.J,

White S.R., “Biologically inspired defenses against computer
viruses”, [Conference Paper] IJCAI-95. Proceedings of the
Fourteenth International Joint Conference on Artificial
Intelligence. Morgan Kaufmann Publishers, San Mateo, CA, USA,
Part vol.1, 1995, pp.985-96.
http://www.research.ibm.com/antivirus/SciPapers/Kephart/IJCAI95/paper_distrib.html

[Schreiner2002] Schreiner, K., “New viruses up the stakes on old tricks”, Internet

Computing, IEEE, Volume: 6 Issue: 4, Jul/Aug 2002
Page(s): 9 -10.

